JJF(津) 161-2026 车辆动态参数检测仪校准规范
- 文件大小:1.44 MB
- 标准类型:计量标准
- 标准语言:中文版
- 文件类型:PDF文档
- 更新时间:2026-01-08
- 下载次数:
- 标签:
资料介绍

天津市地方计量技术规范
JJF(津)161-2026

车辆动态参数检测仪
校准规范
Calibration specification for Vehicle Dynamic ParameterDetector
2026-01-04发布2026-04-04实施

天津市市场监督管理委员会发 布
归口 单 位: 天津市市场监督管理委员会
主要起草单位: 天津市计量监督检测科学研究院
主要起草单位: 中汽研汽车检验中心(天津)有限公司天津市计量监督检测科学研究院
参加起草单位: 天津大学
中国船舶集团有限公司第七〇七研究所天津摩托车质量监督检验所
本规范委托中汽研汽车检验中心(天津)有限公司负责解释
本规范主要起草人:
陈 曦 (中汽研汽车检验中心(天津)有限公司)
胡效宁 (中汽研汽车检验中心(天津)有限公司)
王海军 (中汽研汽车检验中心(天津)有限公司)
谢 宁 (天津市计量监督检测科学研究院)参加起草人:
郑叶龙 (天津大学)
白 天 (中汽研汽车检验中心(天津)有限公司)
杨古涵 (中汽研汽车检验中心(天津)有限公司)
王肖龙 (中国船舶集团有限公司第七〇七研究所)
王 昊 (天津摩托车质量监督检验所)
目录
引言 (Ⅱ)
1范围 (1)
2引用文件 (1)
3 术语和计量单位 (1)
4概述 (1)
5计量特性 (1)
6校准条件 (2)
7 校准项目和校准方法 (3)
8校准结果 (9)
9复校时间间隔 (9)
附录A (10)
附录B (12)
附录C (14) 引言
JJF1001-2011《通用计量术语及定义》、JJF1071-2010《国家计量校准规范编写规则》、JJF 1059.1-2012《测量不确定度评定与表示》共同构成支撑本规范制定工作的基础性系列规范。
本规范根据车辆动态参数检测仪的实际使用状态与校准需求,参照GB/T18214.1-2000 《全球导航卫星系统(GNSS)第1部分:全球定位系统(GPS)接收设备性能指标、测试方法和要求的测试结果》,JJF2139-2024《汽车行驶记录仪校准规范》进行制定。该测试系统主要技术指标的确定参照这些规范与实际使用需求共同确定。
本规范为首次制定。
车辆动态参数检测仪校准规范
1范围
本规范适用于新制造、使用中和维修后车辆动态参数检测仪的校准。
2引用文件
本规范引用了下列文件:
JJF 1001-2011 《通用计量术语及定义》
JJF 1059.1-2012《测量不确定度评定与表示》
JJF 1071-2010 《国家计量校准规范编写规则》
JJF 2139-2024 《汽车行驶记录仪校准规范 》
GB/T18214.1-2000 《全球导航卫星系统(GNSS)第1 部分:全球定位系统(GPS)接收设备性能指标、测试方法和要求的测试结果》
凡是注日期的引用文件,仅注日期的版本适用本规范;凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本规范。
3 术语和计量单位
3.1 伪距 Pseudo Range
在测量接收机到卫星的距离时,由于卫星时钟、接收机时钟的误差以及无线电信号经过电离层和对流层中的延迟,实际测出的距离与卫星到接收机的几何距离有一定的差值,因此,一般称测量出的距离为伪距。
4概述
车辆动态参数检测仪是一种用于测量和分析车辆在行驶过程中速度、距离、时间、轮速等动态参数的设备,一般由天线、接收机及控制处理软件组成,主要任务是接收卫星信号,生成运行轨迹信息,记录和处理车辆动态参数测试数据。
5计量特性
5.1 定位响应时间 最大允许误差:≤180s;5.2时间
测量范围:(0~30)min,最大允许误差:土1s;
5.3速度
测量范围:(0~500)km/h,最大允许误差:±1km/h;
5.4距离
测量范围:(0~﹢∞),最大允许误差:土0.5%;
5.5定位
测量范围:覆盖全球,偏差:不大于15m;
5.6轮速
测量范围:(0~1500)r/min,最大允许误差:±1%;
5.7压力
测量范围:(0~70MPa),最大允许误差:±0.5%;
5.8踏板力
测量范围:(0~1500)N,最大允许误差:±0.5%FS;注:以上要求不适用于合格性判别,仅供参考。
6 校准条件
6.1 环境条件
环境温度:(10~35)℃;
环境湿度:≤ 80% RH;
6.2 测量标准及其他设备
测量标准及其他设备需符合表1要求。
表1 测量标准及其他设备
序号 设备名称 技术指标
1
卫星导航信号模拟器 测量范围:速度不低于500km/h
最大允许误差(MPE):±0.1%
距离定位偏差:3m 2 标准计时器 测量范围:时长大于24h 分度值不大于1ms
准确度:优于1×10-4s 3 数字压力表 需要配备符合量程范围的数字压力计准确度等级:0.05级 4 砝码 一组砝码,测量范围不小于1500N准确度等级:M1 5 标准转速装置 测量范围:不小于1500r/min
示值误差:不超过±0.1% 6 同步触发装置 能够对车辆动态参数检测仪的时间、速度信号同时启停 7 工装 其他校准过程中需要的工装类设备,如压力控制装置等
7 校准项目和校准方法
7.1 校准项目
表2 校准项目表
序号 校准项目 1 外观检查 2 定位响应时间 3 时间示值误差 4 速度示值误差 5 距离示值误差 6 轮速示值误差 7 压力示值误差 8 踏板力示值误差 9 位置误差
7.2 校准方法
7.2.1外观检查
车辆动态参数检测仪应有唯一性标识,各部件操作灵活,显示清晰,不应有影响校准的缺陷。
7.2.2 定位响应时间测试
启动卫星导航信号模拟器,设定不少于四颗卫星数的模拟信号并开始运行。将被校车辆动态参数检测仪天线放置于模拟信号辐射范围内,启动车辆动态参数检测仪,记录设备 正常锁定卫星的时间。
7.2.3 时间示值误差校准
启动卫星导航信号模拟器,设定不少于四颗卫星数的模拟信号并开始运行。
将被校车辆动态参数检测仪天线放置于模拟信号辐射范围内,启动车辆动态参数检测仪,待车辆动态参数检测仪工作正常后,用同步触发装置触发车辆动态参数检测仪和标准计时器计时起始和停止,时间间隔按客户要求进行设置, 记录车辆动态参数检测仪接收机
-
上显示的时间。每个校准点重复测量3次,按公式(1)和(2)计算平均值ti和示值误差Δti:

-
![]()
Δti=ti- t0i2
式中:
i—校准点数;
n—第i 校准点的校准次数;
j —第i校准点校准次序数;
ti—被校车辆动态参数检测仪GPS 在第i 校准点示值,s;
tij—被校车辆动态参数检测仪在第i 校准点第j 次校准时的示值,s;
Δti—被校车辆动态参数检测仪在第i校准点示值误差,s;
-
ti—被校车辆动态参数检测仪在第i校准点3次测量显示值的算术平均值,s;
t0i—标准装置在第i 校准点示值,s。
7.2.4 速度示值误差校准
启动卫星导航信号模拟器,设定不少于四颗卫星数的模拟信号,在被校车辆动态参数检测仪测量范围内设定6 个速度点,亦可根据用户要求增加速度点,依次选择每个速度点开始匀速运行。
将被校车辆动态参数检测仪天线放置于模拟信号辐射范围内,启动车辆动态参数检测仪,待车辆动态参数检测仪工作正常后,记录其速度显示值。
每个校准点重复测量3次,按公式(4)计算示值误差Δvi:

一
![]()
Δvi=vi 一v0i4
式中:
i— 校准点数;
n— 第i校准点的校准次数;
j — 第i校准点校准次序数;
vij— 被校车辆动态参数检测仪在第i 校准点第j次校准时的示值,km/h;
一
vi— 被校车辆动态参数检测仪在第i 校准点示值,km/h;
Δvi— 被校车辆动态参数检测仪在第i 校准点的示值误差,km/h;
v0i— 第i 校准点标准速度值,km/h。
7.2.5 距离示值误差校准
启动卫星导航信号模拟器,设定不少于四颗卫星数的模拟信号,在被校车辆动态参数检测仪测量范围内设定6 个速度点,亦可根据用户要求增加速度点,依次选择每个速度点开始匀速运行。
将被校车辆动态参数检测仪天线放置于模拟信号辐射范围内,启动车辆动态参数检测仪,待车辆动态参数检测仪工作正常后,用同步触发装置起始车辆动态参数检测仪的距离记录功能,分别记录距离示值。当速度低于120km/h时,可选择100m 距离进行校准,速度高于120km/h时,可适当延长校准距离。
![]()
每个校准点重复测量3次,按公式(5)和(6)计算平均值s、示值误差δi:

一

式中: i— 校准点数;
n — 第i校准点的校准次数;
j — 第i校准点校准次序数;
si— 被校车辆动态参数检测仪在第i 校准点示值,m;
sij— 被校车辆动态参数检测仪在第i 校准点第j次校准时的示值,m;
δi— 被校车辆动态参数检测仪在第i 校准点的示值误差,m;
si — 被校车辆动态参数检测仪在第i 校准点3次测量显示值的算术平均值,m;
s0i— 标准装置在第i 校准点示值,m。
7.2.6 位置误差
启动卫星导航信号模拟器,设定不少于四颗卫星数的模拟信号,设定相应的经度、纬度开始运行。
将被校车辆动态参数检测仪天线放置于模拟信号辐射范围内,启动车辆动态参数检测仪,待车辆动态参数检测仪定位正常后。记录其经纬度 (λ0,φ0)。
每个位置校准点重复测量5次,以5次位置测量值的算术平均值作为测量结果,按公式(7)、(8)计算:


式中:
-
λ — 经度读数平均值,度;
φ- —纬度读数平均值,度;
λi— 第i次测量得到的经度读数,度;
φi— 第i次测量得到的纬度读数,度;
n— 重复测量次数。
纬度距离误差按公式(9)计算:

式中:
φ0— 卫星模拟器的纬度读数,度;
![]()
— 车辆动态参数检测仪纬度的测量平均值,度;
Δφm — 卫星模拟器的经度读数与车辆动态参数检测仪纬度的测量平均值之间的差值对应的距离,米;
Rs — 地球短轴半径,取6356752米。
f)经度距离误差按公式(10)计算:

式中:
λ0— 卫星模拟器的经度读数,度;
λ- —车辆动态参数检测仪经度的测量平均值,度;
Δλm— 卫星模拟器的经度读数与车辆动态参数检测仪经度的测量平均值之间的差值对应的距离,米;
φ0— 卫星模拟器的纬度读数,度;
RL— 地球长轴半径,取6378137米。
选择1-5 个不同经纬的测试场景,重复以上步骤。
7.2.7 轮速示值误差
将被校车辆动态参数检测仪与标准转速装置检测端口紧密连接。使其测量端靠紧连接轴表面。
将标准转速装置设定至选取的校准点(校准点通常为200r/min、400 r/min、800 r/min、1000r/min、1500r/min;也可以根据用户要求选择校准点),待稳定后读取并记录转速示值。每个校准点重复测量3次,按公式(11)计算示值误差。

式中:
δV— 被机动车道路试验用车轮转速测试仪示值误差,%;
—
v— 被机动车道路试验用车轮转速测试仪的转速示平均值,r/min ;
V— 标准轮速信号仪的转速示值,r/min。
7.2.8 压力示值误差
将压力控制装置连同数字压力表与压力测量单元紧密连接并达到平衡后,每隔2min左右记录数字气压表和被校压力测量单元的压力示值,共记录3 组数据。重复上述步骤,完成每个校准点的校准。
计算压力示值误差。
Δpi =p(-)i—psi (12)
式中:
Δpi— 第i点压力示值误差,kPa;
p(-)i— 第i点被校压力测量单元3次压力示值平均值,kPa;
psi— 第i点数字气压表大气压力示值,kPa;
7.2.9 踏板力示值误差
将踏板力传感器轴心与工装轴心放在同一轴线上,并在工装上增加砝码,增加到需校准的力值,对每个校准点测量3次,记录三次测量值,并计算平均值和示值误差。

i—F (13)
式中:
ΔFi— 第i点踏板力示值误差,N;
F(-)i— 第i点被校踏板力示值平均值,N;
F — 第i点砝码力值示值,N;
8 校准结果
校准结果应在校准证书上反映,校准证书应至少包含以下信息:
a)标题:“校准证书”;
b)实验室名称和地址;
c)进行校准的地点(如果与实验室的地址不同);
d)证书的唯一性标识(如编号),每页及总页数的标识; e)客户的地址和名称;
f)被校对象的描述和明确标识;
g)进行校准的日期,如果与校准结果的有效性和应用有关时,应说明被校对象的接收日期;
h)如果与校准结果的有效性应用相关时,应对被样品的抽样程序进行说明;
i)校准所依据的技术规范的标识,包括名称及代号;
j)本次校准所用测量标准的溯源性及有效性说明;
k)校准环境的描述;
l)校准结果及其测量不确定度的说明;
m)对校准规范的偏离的说明;
n)校准证书或校准报告签发人的签名、职务或等效标识;
o)校准结果仅对被校对象有效的声明;
p)未经实验室书面批准,不得部分复制证书的声明。
9 复校时间间隔
车辆动态参数检测仪的复校时间间隔由用户自定,建议不超过1年。
附录A
原始记录参考格式
委托单位 证书编号 设备名称 型号规格 生产厂家 出厂编号
校准用测量设备 名称 型号规格 设备编号 溯源机构 证书编号 不确定度/最大允差 有效期至 技术依据 环境条件 温度 相对湿度 校准地点 外观 校准日期 定位响应时间
时间 标准值 测量值 误差 测量不确定度
速度 标准值 测量值 误差 测量不确定度
距离 标准值 测量值 误差 测量不确定度
位置 标准值 测量值 误差 测量不确定度 经度 纬度 经度 纬度 经度 纬度 经度 纬度
轮速 标准值 测量值 误差 测量不确定度 压力 标准值 测量值 误差 测量不确定度 踏板力 标准值 测量值 误差 测量不确定度 校准员 核验员
附录B
校准证书内页推荐格式
证 书 编号: XXXXXX-XXXX
校准机构授权说明 校准所依据的技术文件(代号、名称): 校准所使用的主要计量器具:
名称
编号 准确度等级/最大允许误差/不确定度
证书编号
证书有效期至
溯源机构 校准地点及其环境条件:
地点:
温度: 相对湿度:其他:
第×页共×页 证 书编号: XXXXXX-XXXX
校准结果
外观 序号 校准项目 测量结果 测量不确定度 1 定位响应时间 —— 2 时间示值误差 3 速度示值误差 4 距离示值误差 5 位置误差 6 轮速示值误差 7 压力示值误差 8 踏板力示值误差 第×页共×页
附录C
校准结果不确定度评定示例
C.1时间示值误差的测量不确定度评定C.1.1 测量方法
用本规范规定的测量方法如正文7.2.3 所述。
C.1.2 时间示值误差数学模型
一
![]()
Δti =ti 一t0iC. 1
式中:
Δti—被校车辆动态参数检测仪在第i 校准点的示值误差,s;
一
ti—被校车辆动态参数检测仪在第i 校准点3次测量显示值的算术平均值,s;
t0i—标准装置第i 校准点示值,s。
C.1.3 方差和灵敏系数
因为各输入量彼此独立,依不确定度传播定律:

由(C.1)式得方差:

式中:
![]()
uti)─被校车辆动态参数检测仪的不确定度分量;
u(t0i)─标准装置的不确定度分量。
灵敏系数:

cC.4

c一1C. 5 根据(C.4),(C.5)式得标准不确定度:

C.1.4 标准不确定度分量
![]()
本测量主要有两项不确定度分量,即由标准装置引入的不确定度ut0i和被校车辆动
![]()
态参数检测仪引入的不确定度u ti,其他的不确定度来源可忽略不计。
![]()
C.1.4.1 被校车辆动态参数检测仪引入的不确定度u (ti
(1)由车辆动态参数检测仪数显量化误差引入的标准不确定度分量
一般车辆动态参数检测仪的分辨率为0.01s,服从均匀分布,其标准不确定度为:

(2)由被校车辆动态参数检测仪时间测量重复性引入的标准不确定度分量
以100 秒时间校准点为例,进行10次独立、等精度测量,测量结果如表C.1。
表C.1100s 校准点时间测量数据表 (单位:s)
100.00 100.01 100.01 100.00 100.00 99.99 99.99 99.99 100.01 100.01 得单次测量的实验标准差:
![]()
stis(其中n=10)
实际测量中,以3次测量结果的算术平均值为测量结果,其标准不确定度分量为:

由重复性引入的不确定度分量大于由分辨力引入的不确定度分量,因此可以不考虑分辨力引入的不确定度,则:
u(t i(—))=ut3=0.0051s
![]()
C.1.4.2 标准装置引入的不确定度ut0i
标准计时器的最大允许误差为±0.001s,服从均匀分布。其标准不确定度为:

C.1.4.3 不确定度分量一览表 表C.2 不确定度分量一览表
不确定度来源 不确定度分量 分布估计 测量重复性引入的不确定度 0.0051s 正态 标准装置引入的不确定度 0.00058s 均匀 C.1.5 合成标准不确定度

C.1.6 扩展不确定度
取置信因子k=2,其扩展不确定度为:U =2×0.0052=0.02s
结论:上述分析及计算得到时间示值误差测量结果的扩展不确定度为:
U=0.02s,(k=2)。
C.2 速度示值误差测量结果的不确定度评定
C.2.1 测量方法
用本规范规定的测量方法如正文7.2.4 所述。
C.2.2 速度示值误差数学模型
![]()
Δvi=v—v0iC. 7
式中:
Δvi—被校车辆动态参数检测仪在第i 校准点的示值误差,km/h;
![]()
v—被校车辆动态参数检测仪在第i 校准点3次测量显示值的算术平均值,km/h;
v0i—标准装置第i 校准点示值,km/h。
C.2.3 方差和灵敏系数
因为各输入量彼此独立,依不确定度传播定律:

由(C.7)式得方差:
![]()
uC(2)Δvi=c1(2)u2 (vi)+ c2(2)u2 v0i(C. 9)
式中:
![]()
u(vi)─被校车辆动态参数检测仪的不确定度分量; u(v0i)─标准装置的不确定度分量。
灵敏系数:


根据(C.8),(C.9)式得标准不确定度:
![]()
uC(2)Δvi=u2 + u2v0i
![]()
C.2.4 标准不确定度分量
(C. 8)
(C. 9)
![]()
(C.10) 本测量主要有两项不确定度分量,即由标准装置引入的不确定度分量uv0i和被校车辆动态参数检测仪引入的不确定度u(vi),其他的不确定度来源可忽略不计。
![]()
C.2.4.1 被校车辆动态参数检测仪引入的不确定度u(vi
(1)由被校车辆动态参数检测仪数显量化误差引入的标准不确定度分量
一般车辆动态参数检测仪的分辨率为0.1km/h,服从均匀分布,其标准不确定度为:

(2)由被校车辆动态参数检测仪速度测量重复性引入的标准不确定度分量分别对6 个速度点进行10次独立、等精度测量,测量结果如表C.3。
表C.3 各校准点速度测量数据表 (单位:km/h)
1
2
3
4
5
6
7
8
9

10 标准差 5.01 5.02 5.00 5.03 4.99 5.01 4.98 5.00 4.99 5.00 0.015 19.98 20.00 19.99 19.98 20.00 20.02 19.98 20.03 19.97 20.02 0.021 59.97 60.00 59.98 59.97 60.03 60.05 60.01 59.98 59.97 60.02 0.029 120.01 119.99 119.98 119.97 120.02 120.03 119.96 120.03 119.97 120.04 0.029 179.98 179.95 179.91 180.01 180.02 179.97 179.96 180.05 180.06 179.94 0.049 299.98 299.95 300.03 299.92 300.05 299.97 299.93 299.98 300.01 300.05 0.047 由表C.3 可知,180km/h 校准点单次测量的实验标准差最大: Si km/h(其中n=10)
在实际测量中,重复条件下测量3次,以3次测量结果的算术平均值为测量结果,其标准不确定度分量为:

由重复性引入的不确定度分量小于由分辨力引入的不确定度分量,因此只考虑分辨力引入的不确定度,则:
![]()
u(v)=uv1=0.029km/h
![]()
C.2.4.2 标准装置引入的不确定度uv0i
根据卫星导航信号模拟器的技术指标,卫星导航信号模拟器伪距率的最大允许误差为±1mm/s(0.0036km/h),服从均匀分布,其不确定度为:

C.2.4.3 不确定度分量一览表
表C.4 不确定度分量一览表
不确定度来源 不确定度分量 分布估计 测量重复性引入的不确定度 0.029km/h 正态 标准装置引入的不确定度 0.002km/h 均匀 C.2.5 合成标准不确定度:

C.2.6 扩展不确定度
取置信因子k=2, 其扩展不确定度为:
U=2 ×0.03=0.06km/h
结论:上述分析及计算得到速度示值误差测量结果的扩展不确定度为:
U=0.06km/h(k=2)。
C.3 距离示值误差测量结果的不确定度评定 C.3.1 测量方法
用本规范规定的测量方法如正文7.2.5 所述。
C.3.2 距离示值误差数学模型

(C.11) 式中:
δi—被校车辆动态参数检测仪在第i 校准点的示值误差,%;
![]()
si—被校车辆动态参数检测仪在第i 校准点3次测量显示值的算术平均值,m;
s0i—标准装置第i 校准点示值,m。
C.3.3 方差和灵敏系数
因为各输入量彼此独立,依不确定度传播定律:

uciuxiC. 12
由(C.12)式得方差:
![]()
uC(2)δi=c1(2)u2+ c2(2)u2 s0i(C. 13)
式中:
![]()
u(si)─被校车辆动态参数检测仪的不确定度分量;
u(s0i)─标准装置的不确定度分量。
灵敏系数:

cC.14

cC.15根据(E.4),(E.5)式得标准不确定度:

C.3.4 标准不确定度分量
![]()
本测量主要有两项不确定度分量,即由标准装置引入的不确定度分量us0i和车辆动态参数检测仪引入的不确定度u,其他的不确定度来源可忽略不计。 C.3.4.1 被校车辆动态参数检测仪引入的不确定度u(si)
(1)由车辆动态参数检测仪数显量化误差引入的标准不确定度分量
一般车辆动态参数检测仪的分辨率为0.01m,服从均匀分布,其标准不确定度为:

(2)由被校车辆动态参数检测仪距离测量重复性引入的标准不确定度分量
以5km/ h 行进100m 校准点为例,进行10次独立、等精度测量,测量结果如表C.5。
表C.5100m 校准点距离测量数据表 (单位:m)
99.84 99.82 99.87 99.86 99.85 99.89 99.87 99.85 99.84 99.86 得平均值:

单次测量的实验标准差:

在实际测量中,在重复条件下测量3次,以3次测量结果的算术平均值为测量结果,其标准不确定度分量为:

由重复性引入的不确定度分量大于由分辨力引入的不确定度分量,因此可以不考虑分辨力引入的不确定度,则:
![]()
u(sl)=us2=0.0113m
![]()
C.3.4.2 标准装置引入的不确定度us0i
根据卫星导航信号模拟器的技术指标,卫星导航信号模拟器伪距率的最大允许误差为±1mm/s,标准距离s0i=v0it,以测试距离100m为例,速度为5km/h时所需时间最长(72s),产生的距离误差最大(0.072m),服从均匀分布,其不确定度为:

C.3.4.3 不确定度分量一览表
表C.6 不确定度分量一览表 不确定度来源 不确定度分量 分布估计 测量重复性引入的不确定度 0.0113m 正态 标准装置引入的不确定度 0.0416m 均匀 C.3.5 合成标准不确定度


C.3.6 扩展不确定度
取置信因子k=2, 扩展不确定度为
U=2 ×0.043%=0.09%
结论:上述分析及计算得到距离示值误差测量结果的扩展不确定度为:
U=0.09%,(k=2)。
C.4 位置误差测量结果的不确定度分析
C.4.1 测量方法
启动卫星导航信号模拟器,设定不少于四颗卫星数的模拟信号,设定相应的经度、纬度开始运行。将被校车辆动态参数检测仪天线放置于模拟信号辐射范围内,启动车辆动态参数检测仪,待车辆动态参数检测仪定位正常后。记录其经纬度 ( λ0 ,φ0)。每个位置
校准点重复测量5次,以5次位置测量值的算术平均值作为测量结果C.4.2 数学模型
C.4.2.1 纬度距离误差

(C.17)
式中:
φ0——卫星模拟器的纬度读数,度;
φ-——车辆动态参数检测仪纬度的测量平均值,度;
Δφm——车辆动态参数检测仪纬度位置示值误差,米; Rs——地球短轴半径,取6356752 米。
其中φ0 、φ-之间相互独立,则可以得到其灵敏系数和方差分别为:


![]()
uc(2)(Δφm)=c12 × u2 φ-+c22 × u2 φ0(C.20)
C.4.2.2 经度距离误差

式中:
λ0——卫星模拟器的经度读数,度;
λ-——车辆动态参数检测仪经度的测量平均值,度;
φ0——卫星模拟器的纬度读数,度;
Δλm——车辆动态参数检测仪经度位置示值误差,米;
RL——地球长轴轴半径,取6378137 米。
其中λ0 、λ-之间相互独立,则可以得到其灵敏系数和方差分别为:



![]()
uc(2)(Δλm)=c32 × u2 λ-+c42 × u2 λ0+c52× u2 φ0(C.25)
C.4.3 标准不确定分量的来源与评定
C.4.3.1 纬度距离误差的标准不确定分量来源与评定
(1)纬度示值φ-引入的标准不确定度u1 (φ-)
车辆动态参数检测仪纬度示值的不确定度主要是测量重复性和示值分辨力引起的标准不确定度。测量结果重复性可以通过连续测量得到的测量列,采用A 类方法进行评定。
在车辆动态参数检测仪与卫星模拟器正常工况条件下,卫星模拟器显示纬度31.2822513197°为校准点;车辆动态参数检测仪对校准点重复测量5次,得数据φi(度) 如表C.7 所示。
表C.7 车辆动态参数检测仪输出目标纬度值(度)
31.2834683 31.2834701 31.2834699 31.2834694 31.2834697 重复性引入的标准不确定度u1 (φ-)为
u1 (φ-)=3.5426×10—7o
车辆动态参数检测仪纬度度示值分辨力引入的不确定度采用B 类方法进行评定。车辆动态参数检测仪纬度示值分辨力为1.0×10—7o,且服从均匀分布,则分辨力引入的标准不确定度为:

重复性标准不确定度远大于分辨力引入的标准不确定度,仅保留重复性标准不确定度,因此纬度示值φ-引入的标准不确定度为:
u(φ-)=3.5426×10—7o
(2)标准器引入的标准不确定度评定u(φ0)
输入量φ0 不确定度由校准装置引入,作为标准器的卫星模拟器的纬度定位误差为±1.0×10—8 o。按均匀分布计,引入的标准不确定度为

(3)输出量的标准不确定度分量一览表
表C.8 输出量的的标准不确定度分量一览表
![]()
序号 输人量估计值的标准不确定度评定 输出量估计值的标准不确定度分量 来源 符号 数值 灵敏系数ci ci×u(x) 1 纬度测量分量 -
u(φ) 3.5426×10—7 110890.0071 3.9283×10—2 2 校准装置分量 u(φ0) 0.57735×10—8 110890.0071 6.4022×10—4 (4)合成标准不确定度的评定
由于各标准不确定度分量互不相关,故合成标准不确定度为uc (Δφm)=0.04m (5) 扩展不确定度的评定取k=2,则
U=k× uc (Δφm)=2×0.04=0.08 m
C.4.3.2 经度距离误差的标准不确定分量来源与评定
--
(1)经度示值λ引入的标准不确定度u(λ)
车辆动态参数检测仪经度示值的不确定度主要是测量重复性和示值分辨力引起的标准不确定度。测量结果重复性可以通过连续测量得到的测量列,采用A 类方法进行评定。
在车辆动态参数检测仪及卫星模拟器装置正常工况条件下,为姓名,卫星模拟器显示经度121.180344063055°为校准点;车辆动态参数检测仪对校准点重复测量5次,得数据λi(度)如表C.9 所示。
表C.9 路端环境感知系统输出目标经度值 (度)
121.1803313 121.1803316 121.1803318 121.1803316 121.1803321 单次实验标准差u1 (λ-)为
u1(λ-)=1.47479×10—7 o
车辆动态参数检测仪经度示值分辨力引入的不确定度采用B 类方法进行评定。车辆动态参数检测仪经度示值分辨力为1.0×10—7o,且误差均匀分布,则分辨力引入的标准不确定度为:

重复性标准不确定度远大于分辨力引入的标准不确定度,仅保留重复性标准不确定度,因此经度示值λ-引入的标准不确定度为:
u(λ-)=1.47479×10—7 o
(2)标准器引入的标准不确定度评定u(λ0)
输入量λ0不确定度由校准装置引入,作为标准器的高精定位系统的经度定位误差为±1.0×10—8 o。按均匀分布计,引入的标准不确定度为

(3)输出量的标准不确定度分量一览表
表C.10 输出量的的标准不确定度分量一览表
![]()
序号 输人量估计值的标准不确定度评定 输出量估计值的标准不确定度分量 来源 符号 数值 灵敏系数ci ci×u(x)
1
经度测量分量
-
u(λ)
1.47479×10—7 9.51035899×104
0.01403
2
校准装置分量
u(λ0)
0.57735×10—8 9.51035899×104
0.00549 (4)合成标准不确定度的评定
由于各标准不确定度分量互不相关,故合成标准不确定度为
uc (Δλm)=0.02 m
(5)扩展不确定度的评定取k=2,则
U=k×uc (Δλm)=2×0.02=0.04 m
C.5 轮速示值误差测量结果的不确定度评定
C.5.1 测量方法
用本规范规定的测量方法如正文7.2.6 所述。
C.5.2 轮速示值误差数学模型

(C.26)
式中:
δV—被机动车道路试验用车轮转速测试仪示值误差,%;
—
v—被机动车道路试验用车轮转速测试仪的转速示平均值,r/min;
V—标准轮速信号仪的转速示值,r/min。 C.5.3 方差和灵敏系数
因为各输入量彼此独立,依不确定度传播定律:

![]()
(C. 27) 由(C.26)式得方差:
uc(2)(δv)=c1(2)u2(v) +c2(2)u2(v)
![]()
(C.28) 式中:
u(v)─被校车辆动态参数检测仪的不确定度分量;u(V)─标准装置的不确定度分量。
灵敏系数:


(C.29) (C.30) 根据(C.29),(C.30)式得标准不确定度:

(C.31) C.5.4 标准不确定度分量
![]()
本测量主要有两项不确定度分量,即由标准装置引入的不确定度分量u(v)和被校车辆动态参数检测仪引入的不确定度u(V),其他的不确定度来源可忽略不计。

C.5.4.1 被校车辆动态参数检测仪引入的不确定度u(v)
(1)由被校车辆动态参数检测仪数显量化误差引入的标准不确定度分量
一般车辆动态参数检测仪的分辨率为1r/min,服从均匀分布,其标准不确定度为:

(2)由被校车辆动态参数检测仪轮速测量重复性引入的标准不确定度分量分别对1 个轮速值进行10次独立测量,测量结果如表G.1。
表C.11 轮速测量数据表 (单位:r/min)
1 2 3 4 5 6 7 8 9 10 标准差 100 100 101 100 100 101 100 100 101 100 0.48 在实际测量中,重复条件下测量3次,以3次测量结果的算术平均值为测量结果,其标准不确定度分量为:

由重复性引入的不确定度分量小于由分辨力引入的不确定度分量,因此只考虑分辨力引入的不确定度,则:
![]()
u(v-)=u(v)=0.58r/min
C.5.4.2 标准装置引入的不确定度u(V)
根据轮速标准装置的校准证书,轮速标准装置的伪距率的最大允许误差为±0.012r/min,服从均匀分布,其不确定度为:

C.5.4.3 不确定度分量一览表
表C.12 不确定度分量一览表
不确定度来源 不确定度分量 分布估计 测量重复性引入的不确定度 0.58r/min 正态 标准装置引入的不确定度 0.007r/min 均匀 C.5.5 合成标准不确定度

uc=0.58r/min
C.5.6 扩展不确定度
取置信因子k=2, 其扩展不确定度为:
U=2×uc=1.16r/min
结论:上述分析及计算得到轮速示值误差测量结果的扩展不确定度为:
U=1.2r/min,(k=2)。
C.6 压力示值误差测量结果的不确定度评定
C.6.1 测量方法 用本规范规定的测量方法如正文7.2.7 所述。
C.6.2 压力示值误差数学模型
—
ΔFi=Fi—Fsi
式中:
Δpi—第i点压力示值误差,kPa;
p(-)i—第i点被校压力测量单元3次压力示值平均值,kPa;
psi—第i点数字气压表大气压力示值,kPa;
C.6.3 方差和灵敏系数
因为各输入量彼此独立,依不确定度传播定律:

由(C.33)式得方差:

![]()
式中:
u(pi)─被校车辆动态参数检测仪的不确定度分量;u(psi)─标准装置的不确定度分量。
灵敏系数:

![]()
根据(C.35),(C.36)式得标准不确定度:
uc(2)(Δpi)=u2 (pi)+ u2 (psi)
(C.32)
(C. 33)
(C.34)
(C.35)
(C.36)
(C.37) C.6.4 标准不确定度分量
![]()
本测量主要有两项不确定度分量,即由标准装置引入的不确定度分量u(psi)和被校车辆动态参数检测仪引入的不确定度u(pi),其他的不确定度来源可忽略不计。
C.6.4.1 被校车辆动态参数检测仪引入的不确定度u(pi)
(1)由被校车辆动态参数检测仪数显量化误差引入的标准不确定度分量
一般车辆动态参数检测仪的分辨率为0.1kPa,服从均匀分布,其标准不确定度为:

(2)由被校车辆动态参数检测仪压力测量重复性引入的标准不确定度分量对150kPa的校准点进行测量,测量结果如表C.13。
表C.13 各校准点压力测量数据表 (单位:kPa)
1 2 3 4 5 6 7 8 9 10 标准差 150.1 150.2 150.1 150.3 150.1 150.3 150.2 150.3 150.4 150.1 0.11 在实际测量中,重复条件下测量3次,以3次测量结果的算术平均值为测量结果,其标准不确定度分量为:

由重复性引入的不确定度分量大于由分辨力引入的不确定度分量,因此只考虑重复性引入的不确定度,则:

C.6.4.2 标准装置引入的不确定度u(Psi)
根据数字压力计的技术指标,数字压力计为0.05 级,挡在150kPa时,最大允许误差为±0.075kPa,服从均匀分布,其不确定度为:

C.6.4.3 不确定度分量一览表
表C.12 不确定度分量一览表
不确定度来源 不确定度分量 分布估计 测量重复性引入的不确定度 0.064kPa 正态 标准装置引入的不确定度 0.043kPa 均匀
C.6.5 合成标准不确定度

C.6.6 扩展不确定度
取置信因子k=2, 其扩展不确定度为:
U=kuc=0.066×2=0.13kpa
结论:上述分析及计算得到压力示值误差测量结果的扩展不确定度为:
U=0.13kPa,k=2。
C.7 踏板力示值误差测量结果的不确定度评定
C.7.1 测量方法
用本规范规定的测量方法如正文7.2.8 所述。
C.7.2 踏板力示值误差数学模型
ΔFi=F(-)i —Fsi(C.38)
式中:
ΔFi—第i点踏板力示值误差,N;
F(-)i—第i点被校踏板力3次踏板力示值平均值,N;
Fsi—第i点砝码力值,N;
C.7.3 方差和灵敏系数
因为各输入量彼此独立,依不确定度传播定律:

uciuxiC. 39,
由(C.39)式得方差:

![]()
式中:
u(Pi)─被校车辆动态参数检测仪的不确定度分量;
u(Psi)─标准装置的不确定度分量。
灵敏系数:

c(C.41)
![]()
c(C.42)根据(C.41),(C.42)式得标准不确定度:
uc(2)(ΔFi)=u2 (Fi)+ u2 (Fsi) (C.43)
C.7.4 标准不确定度分量
![]()
本测量主要有两项不确定度分量,即由标准装置引入的不确定度分量u(Fsi)和被校车辆动态参数检测仪引入的不确定度u(Fi),其他的不确定度来源可忽略不计。
C.7.4.1 被校车辆动态参数检测仪引入的不确定度u(Fi)
(1)由被校车辆动态参数检测仪数显量化误差引入的标准不确定度分量
一般车辆动态参数检测仪的分辨率为0.1N,,服从均匀分布,其标准不确定度为:

(2)由被校车辆动态参数检测仪压力测量重复性引入的标准不确定度分量对200N的校准点进行测量,测量结果如表C.13。
表C.13 各校准点踏板力测量数据表 (单位:N)
1 2 3 4 5 6 7 8 9 10 标准差 200.1 200.2 200.1 200.1 200.1 200.1 200.2 200.2 200.1 200.2 0.052 在实际测量中,重复条件下测量3次,以3次测量结果的算术平均值为测量结果,其标准不确定度分量为:

由重复性引入的不确定度分量小于由分辨力引入的不确定度分量,因此只考虑分辨力引入的不确定度,则:

C.7.4.2 标准装置引入的不确定度u(Fsi)
根据砝码的技术指标,砝码M1级,在200N时,最大允许误差为±1000mg,服从均匀分布,其不确定度为:

C.7.4.3 不确定度分量一览表
表C.12 不确定度分量一览表
不确定度来源 不确定度分量 分布估计 测量重复性引入的不确定度 0.064kPa 正态 标准装置引入的不确定度 0.043kPa 均匀
C.7.5 合成标准不确定度g取9.8N/kg
uc= u2 (F-i)+ u2(Fsi)= 0.0582 +(577.35/1000000*9.8)2 =0.058NC.7.6 扩展不确定度
取置信因子k=2, 其扩展不确定度为:
U=kuc=0.058×2=0.12N
结论:上述分析及计算得到踏板力示值误差测量结果的扩展不确定度为:

U=0.12N,k=2。
![]()
